

PROJECT MANAGER FORCE PROJECTION

Army Ground Robotics Portfolio:
NDIA Ground Robotics
Capability Conference

Bryan J. McVeigh PM Force Projection

Agenda

- Portfolio Overview
- Active Robotics Programs
- Emerging Robotics Requirements
- Strategic Efforts

Framing the Army's Robotics and Autonomous Systems (RAS) Strategy

As the Army articulates RAS integration across multiple Warfighting Functions, this vision must also show *realistic objectives* in the **near-term**, *feasible objectives* in the **mid-term**, and *visionary objectives* for the **far-term**. Beginning with near-term objectives, each successive phase links its objectives to and builds from the achievements of the previous phase.

Near-Term Objectives:

- Leader-Follower Convoy Technology Employment
- ➤ Lighten the Soldier load
- Enhance stand-off from threats and improve situational awareness

Mid-Term Objectives:

- ➤ Technologies improve the **autonomy** of unmanned systems
- > Technologies will enable unmanned cargo delivery
- > Robots act as "teammates" rather than tools
- Micro autonomous air and ground systems will also enhance Platoon, Squad, and Soldier situational awareness

Source for All Listed Objectives: TRADOC Pam 525-3-1, Army Operating Concept, Appendix C-2.

Far-Term Objectives:

Technologies will enable manned and unmanned teaming in both air and ground maneuver though investments in scalable sensors, scalable teaming, Soldier-robot communication, and shared understanding through advancements in machine learning.

PEO CS&CSS Robotics Portfolio

^{*} Images are conceptual representations, not endorsements.

MTRS Inc II Program Overview / Update

- The Man Transportable Robotic System (MTRS) Inc II is a remotely operated, man-transportable, robotic system
- Provides a standoff capability to interrogate, detect, confirm and neutralize presence across War-fighting functions
- Capability to identify and disposition explosive hazards
- Army's medium sized common platform allowing use of various platform payloads in support of current and future missions
- * AAO includes EOD requirement of 587

✓ CPD: Approved, 15 MAY 2013

✓ RFP Released: 09 NOV 2016

Contract Award: 4QFY17

• AAO: 1,210

Users: Engineer, CBRN and EOD

Common Robotic System (Individual) {CRS(I)}

System Description: A man-packable (< 25lbs), miniature, highly mobile, unmanned robotic system with advanced sensors and mission modules for dismounted forces. Designed so that operators can quickly reconfigure for various missions by adding/removing modules and/or payloads.

Common Robotic Platform Enabling Payloads to Address the Operational Capabilities Gaps:

- Standoff short range Intelligence, Surveillance, & Reconnaissance (ISR)
- Remote Chemical, Biological, Radiological, and Nuclear (CBRN) detection
- Remote Explosive Obstacle Counter Measure (EOCM)
- Remote Explosive Ordnance Disposal (EOD) operations
- Remote clearance of danger areas

Users: INF, CBRN, ENG and EOD (EOD equals ENG payload; no unique requirement)

CRS(I) Proposed Materiel Solution

Entire CRS(I)
System required
to fit into single
Large MOLLE

CBRN Payload

Secondary Display*

CBRN Sensor Adapter*

*All diagrams are notional

**CRS(I) weight requirement does not include
payloads or manipulator (included in
standard payload)

Engineer/EOD Payload

Secondary Display*

Projected CRS(I) Allocated Breakdown

CRS(UC) Demonstration at Ft Benning

Purpose:

Reduce overall program risk to meet CRS(I) Universal Controller(UC) KPPs while providing an cost-effective and viable government solution to meet current and future requirements

Objectives:

- Confirm UAS H-GCS (aka TOGA) can operate both a UAS and UGV
- Confirm MOCU4 Software can incorporate both UAS and UGV applications and enable hand-off between platforms within an operationally relevant environment

MOCU – Multi-Robot Operator Controller TALON
TOGA – Tactical Open Government-Owned Architecture
VIS – Vehicle Interface Specification
UCS – Unmanned Control Segment
JAUS – Joint Architecture for Unmanned Systems

CRS(UC) Demonstration at Ft Benning (Cont)

Demo Configuration

Outcome:

- Controlled a UAS, Unattended Sensor, MTRS Inc II and CRS(I) surrogates
- Performed hand-off between multiple unmanned systems
- Demonstrated MOCU3&4 software interoperability on multiple controllers
- Confirmed MOCU software as a viable starting point (TRL6) for prospective CRS(I) offerors

Route Clearance & Interrogation System (RCIS)

Route Clearance & Interrogation System (RCIS) CPD consists of two capabilities that are unmanned, semi-autonomously controlled, highly mobile platforms to support Route Clearance Platoons and the BCTs.

- RCIS Type I:
 - Optionally manned or unmanned
 - High Mobility Engineering Excavator (HMEE) capable of enabling Soldiers to semi- autonomously interrogate, excavate, and classify deep buried explosive hazards, IEDs, and caches.
 - ✓ CPD: Approved, Dec 2012
 - ✓ Industry Day: 1-2 Aug 2016
 - RFP Release: MAR 17
 - Milestone B: 1QFY18
 - Contract Award: 1QFY18
 - AAO: 260
- RCIS Type II to follow, leveraging technology and architecture from the RCIS Type 1 program

Robotic Enhancement Program (REP)

 "Buy, try and inform" - evaluate state-of-the-art robotic systems and/or payloads that are Government-Off-The-Shelf (GOTS), Commercial-Off-The-Shelf (COTS) and Non-Developmental Items (NDI) to inform the requirement and acquisition process

Status:

- Experiment 16.1 17.1
 - Proposals submitted 109
 - Proposals Selected: 25
- Experiment 17.2

Proposals submitted 146 (62 New/ 84 Previous)
Council of Colonels convened: 2 MAR 17

REP Submission Site:

http://www.peocscss.army.mil/rep.html

SMET FORSCOM Excursion

Description: Select ~4 Surrogates, totaling 60-80 systems issued to Soldiers in 2-3 Brigades for a 1 Year Excursion to develop TTPs and CONOPs

Two Configurations: Unmanned and Optionally Manned

Required Capabilities:

Stretch Goals:

Follow Me	Silent Watch	Transportability at convoy speed
Battery Charging	Universal controller compatibility	Imbedded Video TMs and Manuals
Reliability	Anti-Rollover	Interoperability/Expandability

Questions for Industry:

- What is your production lead time and rate?
 - Robotic Rodeo (1-2 each)
 - Test (1-2 each)
 - Excursion Production (~5 unit sets)
- What is the earliest date you can have a system to Ft Benning for Rodeo assessment?
- How would you support Test, and Excursion?
- Is 5-10K sufficient to offset Rodeo costs?
- Would Rodeo assets be available to immediately support safety testing?

NIE16.1 OCT15 SMET Surrogates

Army SMET Goals

Army leadership desires automation & robotics sooner vs later.

Near Term (April to October 2017)

- OTA Request for Information/Proposal
- FY17 SMET Trials (late summer)
- Contract for Systems(~15-20 total)
 - 1-5 Test Assets
 - 10-15 Excursion Assets
- \$100K per system target cost

Long Term (FY18-FY19)

- Excursion with 60-80 systems in 2-3 Brigades and at Test Sites
 - Demonstrate and insert increased capabilities
 - FSR Support for 15-20 systems at 4+ Government Sites/Installations
- CPD developed/informed by developing TTPs and CONOPs
- OTA continued leverage
- Informed Program Decisions Determine Future

Leader Follower Excursion

Description: Capitalize on Automated Ground Resupply S&T efforts to equip 3 Transportation Companies with Leader Follower capability for up to 2 year Excursion for TTP and CONOP development

Required Capabilities:

Lane Following	Obstacle Detection	Primary/Secondary Roads
Day/Night Ops	Line of Site Operation	Optionally Manned

Stretch Goals:

Automated Reverse	GPS Denied Ops	Heavy Rain/Snow/Fog
Sensor Range Improvement	Obstacle Avoidance	Unimproved Roads/Trails

System Evaluation/ Measurement: September 2017

Autonomous
Autonomous
Ground
Mobility
Resupply
Appliqué System
(AMAS)

Additional
Increments

Army LF Goals

Army leadership desires automation & robotics sooner vs later.

Near Term (Demonstrate in September 2017)

- Modes (Leader Follower, Teleop)
- Assembly (Manual Line Up Vehicles)
- Formations (Column)
- Reverse (Teleoperation and Manned)

- GPS Denied (LOS to Leader)
- Turnaround (Vehicle K Turn)
- Obstacles (Static & Large Dynamic)
- Dynamic Rerouting (None)

- AO (Primary & Secondary Roads)
- Operations (Day and Night Driving)
- Weather (Light Rain/Snow/Fog)
- Safe Harbor (Stop)

Long Term (FY18-20)

- Capitalize on S&T Investments
- Incremental approach and build
- 2+ Year Excursion
- OTA Leveraged Activities

- 10 Test Systems
- 140 additional Excursion Systems
- Hardware Purchases

- CPD developed/informed
- OTA continued leverage
- Informed Program Decisions
 Determine Future

Autonomous Trucks Testing: "Long Tail" of Use-Cases

Number of Times Use-Case Will Occur Over Lifecycle

Use case variables include: Each point on the Speeds: **Operations:** 45 - 55 mph Primary Roads line represents a Wartime - High Intensity (7-day Surge) 30 - 45 mph Secondary Roads unique use-case. Wartime - Low Intensity (30-day Period) 10 - 30 mph Trails **Obstacles:** Peacetime - Low Intensity (240-day Period) 5 - 15 mph Rough Trails Hauling: Static Mobility: Trees larger than 4" diameter and 2ft. Local Haul Dry (Sand) Line Haul above ground level Wet (Rain) Boulders larger than 18"Lx Terrain: Snow 10"Wx18"H **Primary Roads** Cargo Loads: Fire Hydrants **High Quality Paved Full Load Dynamic Secondary Pavement** Partial Load Rough Pavement Degraded **Oncoming Traffic** No Load Blind-side Passing Traffic Rough Pavement Highly Degraded Full Load w/trailer **Secondary Roads** Humans (minimum 36" tall) Partial Load w/trailer Large Animals (e.g. Loose Surface No Load w/trailer Washboard & Potholes camels/cows/horses/or larger) Climate: Herds of small farm animals Belgian Block Hot (Desert) (sheep/goats/geese) Off-Road Basic (Mild) Trails Cold (Arctic) **Rough Trails** Tropic (Jungle) Serial Size (Follower Positions): 3 - 7 Follower Positions Increasing Frequency of Occurrence

Unique Use-Cases

"long tail" of use cases: cost driver for achieving reliability
For manned systems, testing organization (ATEC/OTC) trusts human driver's decision making process to address these use-cases

use-cases already demonstrated

Interoperability Profiles (IOPs) Status

RAS-G IOPs enable modular open software & hardware interfaces

- IOP V0 provided interfaces for capabilities already fielded
- IOP V1 provides interfaces for MTRS Inc II, CRS-I
- IOP V2 provides interfaces for RCIS & HMDS
- IOP V3 priority Tactical Wheeled Vehicle Applique Kits, SMET & other emerging requirements
- IOP V4 priority Additional TWV autonomy, Robotic Wingman w/ VICTORY, EOD

Robotic Payloads

IOPs developed based on Navy AEODRS program

Basic System Mgmt
Basic Manipulators
Payload Mgmt & Interfaces
IOP V0
Teleoperation Basic Controllers
Basic Cameras Basic Radios
JAUS Profiling Rules

IOP VO

2011 2013 February 2016 December 2017

Video TM Concept

Supplement existing commercial manuals with video instructions to mirror private sector sustainability for COTS and NDI equipment.

Current Robotic Commercial TM

Path Forward (Pilot Program - MTRS Inc II & CRS-I)

Discussion

PROJECT MANAGER FORCE PROJECTION

Back Up

Bryan J. McVeigh PM Force Projection

MTRS MKII (EOD) Recap

Program Description

- Recapitalize 478 MTRS MKII to the Talon 5A configuration utilizing a return/retrofit/field strategy
 - Fielding starts APR 2017 for 5 years
- Qinetiq conversion kit includes:
 - Talon V Chassis Upgrade
 - Q-Tray- longer battery life per vehicle mission
 - Wave Relay 5 Radio, IOP compliant (same as NGB CBRNe)
 - **Laptop Control Unit**

Talon 5A

Universal Controller Strategy

Vision: Controller(s) which meets or exceeds CRS(I) threshold while leveraging Better Buying Power emphasis areas:

 Provide draft technical requirements to industry early and involve industry in funded concept definition

- Modular Open Systems Architecture
- Interoperability
- Organic engineering capabilities
- Extensibility & Commonality
- Cybersecurity
- Commercial Technology
- Supportability & Maintainability

Risk Mitigation:

- Controller and Software demonstrations (Sept 16 and Jan 17) to mature MOCU4 software to handoff/operate on multiple controllers controlling multiple platforms
- Robotic Enhancement Program (REP) authorized purchase of Bokam, TRC-Lite controllers and UAS controller (TOGA H-GCS)

CRS(I) Weight Estimate

Shipping Container

Does Not Include: MOLLE Pack, CBRN Sensors

*The items listed are meant to provide information regarding the allocation of the weight requirements as listed in the CRS(I) performance specification and is not an all inclusive list.